On an Unusual Conjecture of Kontsevich and Variants of Castelnuovo’s Lemma

نویسنده

  • J. M. Landsberg
چکیده

Let A = (a j ) be an orthogonal matrix with no entries zero. Let B = (b j ) be the matrix defined by b j = 1 ai j . M. Kontsevich conjectured that the rank of B is never equal to three. We interpret this conjecture geometrically and prove it. The geometric statment can be understood as a generalization of the Castelnouvo lemma and Brianchon’s theorem in algebraic geometry. §1. Definitions and Statements Definition 1.1. Given a k × l matrix A = (aα), 1 ≤ i ≤ k, 1 ≤ α ≤ l, with no entries zero, define the Hadamard inverse of A, B = (bα), by b i α = 1 aα . (The name is in analogy with the Hadamard product.) Maxim Kontsevich conjectured the following: Conjecture 1.2. (Kontsevich (1988)) Let A be an orthogonal matrix (either over R or C), with no entries zero. Let B be the Hadamard inverse of A. Then the rank of B is never equal to three. At first glance, (1.2) may not appear all that striking because based on a naive count, one would not expect any Hadamard inverses of low rank to exist. However Kontsevich asserted and we show the following: Theorem 1.3. The space of k × k orthogonal matrices with rank two Hadamard inverses is (2k − 3)-dimensional. We will rephrase (1.2), (1.3) in geometric language and prove them. First we will need some definitions: 1991 Mathematics Subject Classification. 114E07, 14M210, 115A99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifiability beyond Kruskal’s Bound for Symmetric Tensors of Degree 4

We show how methods of algebraic geometry can produce criteria for the identifiability of specific tensors that reach beyond the range of applicability of the celebrated Kruskal criterion. More specifically, we deal with the symmetric identifiability of symmetric tensors in Sym4(Cn+1), i.e., quartic hypersurfaces in a projective space Pn, that have a decomposition in 2n + 1 summands of rank 1. ...

متن کامل

On Knots with Trivial Alexander Polynomial

We use the 2-loop term of the Kontsevich integral to show that there are (many) knots with trivial Alexander polynomial which don’t have a Seifert surface whose genus equals the rank of the Seifert form. This is one of the first applications of the Kontsevich integral to intrinsically 3-dimensional questions in topology. Our examples contradict a lemma of Mike Freedman, and we explain what went...

متن کامل

The Lines of the Kontsevich Integral and Rozansky’s Rationality Conjecture

This work develops some technology for accessing the loop expansion of the Kontsevich integral of a knot. The setting is an application of the LMO invariant to certain surgery presentations of knots by framed links in the solid torus. A consequence of this technology is a certain recent conjecture of Rozansky’s. Rozansky conjectured that the Kontsevich integral could be organised into a series ...

متن کامل

Generalized Non-commutative Degeneration Conjecture

In this paper we propose a generalization of the Kontsevich–Soibelman conjecture on the degeneration of Hochschild-to-cyclic spectral sequence for smooth and compact DG category. Our conjecture states identical vanishing of a certain map between bi-additive invariants of arbitrary small DG categories over a field of characteristic zero. We show that this generalized conjecture follows from the ...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008